Creep Evolution Analysis of Composite Cylinder Made of Polypropylene Reinforced by Functionally Graded MWCNTs

Authors

  • A Loghman Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan
  • E Loghman Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan
  • H Shayestemoghadam Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan
Abstract:

Polypropylene is one of the most common, fastest growing and versatile thermoplastics currently used to produce tanks and chemical piping systems. Even at room temperature creep is considerable for polypropylene products. The creep behavior of strains, stresses, and displacement rates is investigated in a thick-walled cylinder made of polypropylene reinforced by functionally graded (FG) multi-walled carbon nanotubes (MWCNTs) using Burgers viscoelastic creep model. The mechanical properties of the composite are obtained based on the volume content of the MWCNTs. Loading is composed of an internal pressure and a uniform temperature field. Using equations of equilibrium, stress-strain and strain-displacement, a constitutive differential equation containing total creep strains is obtained. Creep strain increments are accumulated incrementally during the life of the vessel. Creep strain increments are related to the current stresses and the material uniaxial Burgers creep model by the well-known Prandtl-Reuss relations. A semi-analytical solution using Prandtl-Reuss relation has been developed to determine history of stresses, strains and displacements. The results are plotted against dimensionless radius for different volume content of MWCNTs. It has been found that the creep radial and circumferential strains of the cylinder reduce with increasing content of carbon nanotubes. It has also been concluded that the uniform distribution of MWCNTs reinforcement does not considerably influence on stresses.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Steady State Creep Behavior of Functionally Graded Thick Cylinder

Creep behavior of thick-walled functionally graded cylinder consisting of AlSiC and subjected to internal pressure and high temperature has been analyzed. The functional relationship between strain rate with stress can be described by the well known threshold stress based creep law with a stress exponent of five. The effect of imposing non-linear particle gradient on the distribution of creep s...

full text

Thermo-elastic behavior of a thick-walled composite cylinder reinforced with functionally graded SWCNTs

In this article, thermo-elastic-behavior of a thick-walled cylinder made from a polystyrene nanocomposite reinforced with functionally graded (FG) single-walled carbon nanotubes (SWCNTs) was carried out in radial direction while subjected to a steady state thermal field. The SWCNTs were assumed aligned, straight with infinite length and a uniform layout. Two types of variations in the volume fr...

full text

thermo-elastic behavior of a thick-walled composite cylinder reinforced with functionally graded swcnts

in this article, thermo-elastic-behavior of a thick-walled cylinder made from a polystyrene nanocomposite reinforced with functionally graded (fg) single-walled carbon nanotubes (swcnts) was carried out in radial direction while subjected to a steady state thermal field. the swcnts were assumed aligned, straight with infinite length and a uniform layout. two types of variations in the volume fr...

full text

Analysis of Viscoelastic Functionally Graded Sandwich Plates with CNT Reinforced Composite Face Sheets on Viscoelastic Foundation

In this article, bending, buckling, and free vibration of viscoelastic sandwich plate with carbon nanotubes reinforced composite facesheets and an isotropic homogeneous core on viscoelastic foundation are presented using a new first order shear deformation theory. According to this theory, the number of unknown’s parameters and governing equations are reduced and also the using of shear correct...

full text

Thermal Creep Analysis of Functionally Graded Thick-Walled Cylinder Subjected to Torsion and Internal and External Pressure

Safety analysis has been done for the torsion of a functionally graded thick-walled  circular cylinder under internal and external pressure subjected to thermal loading. In order to determine stresses the concept of Seth’s transition theory based on generalized principal strain measure has been used. This theory simplifies the set of mechanical equations by mentioning the order of the measure of...

full text

Creep Analysis of an Isotropic Functionally Graded Rotating Disc

Abstract Creep response for isotropic axisymmetric rotating disc made of a particle-reinforced FGM has been investigated in the present study. The result obtained for non linear variation of particle distribution along the radial distance of the disc are compared with that of discs containing the same amount of particle distributed uniformly or linearly along the radial distance. The disc under...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 8  issue 2

pages  372- 383

publication date 2016-06-30

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023